Exercício Resolvido - Continuidade, limite e derivada parcial

Seja a função $ f: \Re ^2 \, \rightarrow \, \Re $ dada por:
$$ f(x,y) =
\left \{
\begin{array}{cc}
\frac{ x^3 y^2 }{x^4 + y^4}, & (x,y) \neq (0,0) \\
0, & (x,y) = (0,0) \\
\end{array}
\right. $$

mostre que ela é contínua em (0,0) e determine as derivadas parciais $ f_x (0,0) $ e $ f_y (0,0) $.

Solução:
Para verificar a continuidade devemos calcular o limite abaixo e ele deve dar zero:

$$ \lim_{(x,y) \rightarrow (0,0) } \frac{ x^3 y^2 }{x^4 + y^4} $$

Para continuar, é preciso perceber que todo valor ao quadrado é positivo ou zero, assim:
$ \left ( x^2 \, - \, y^2 \right )^2 \, \geq \, 0 $
$ x^4 \, - \, 2 x^2 y^2 \, + \, y^4 \, \geq \, 0 $
$ x^4 \, + \, y^4 \, \geq 2 x^2 y^2 $
$ \frac{1}{2} \, \geq \, \frac{x^2 y^2}{x^4 \, + \, y^4} $

Como só temos termos ao quadrado e à quarta, $ \frac{x^2 y^2}{x^4 \, + \, y^4} $ certamente não é negativo, assim:

$$ \frac{1}{2} \, \geq \, \frac{x^2 y^2}{x^4 \, + \, y^4} \, \geq \, 0 $$

Logo, o termo $ \frac{x^2 y^2}{x^4 \, + \, y^4} $ é limitado. Assim, fazendo a igualdade e substituindo $ \frac{x^2 y^2}{x^4 \, + \, y^4} \, = \, t $ temos:

$$ \lim_{(x,y) \rightarrow (0,0) } x \times \left ( \frac{ x^2 y^2 }{x^4 + y^4} \right ) = \lim_{(x,y) \rightarrow (0,0) }{ x \times t} $$

Como $ x \, \rightarrow \, 0 $ e $ t $ é limitado, o limite é zero:

$$ \lim_{(x,y) \rightarrow (0,0) }{ x \times t} \, = \, 0 $$

Perceba na figura a seguir como realmente a superfície tende a zero em qualquer direção:

Limite




Veja também:
Exercício Resolvido - Reta tangente à intersecção de superfícies
Exercício Resolvido - Multiplicadores de Lagrange
Exercício Resolvido - Pontos de máximo, mínimo e sela

As derivadas parciais no ponto (0,0) devem ser calculadas pela definição:

$$ f_x (0,0) \, = \, \lim_{h \rightarrow 0 }{ \frac{f(h,0) - f(0,0)}{h}} \, = \, \lim_{h \rightarrow 0 }{ \frac{h^3 0^2}{h^4+0^4}} \, - \, 0 \, = \, 0 $$
$$ f_y (0,0) \, = \, \lim_{h \rightarrow 0 }{ \frac{f(0,h) - f(0,0)}{h}} \, = \, \lim_{h \rightarrow 0 }{ \frac{0^3 h^2}{0^4+h^4}} \, - \, 0 \, = \, 0 $$

Logo:

$$ f_x(0,0) \, = \, 0 $$
$$ f_y(0,0) \, = \, 0 $$

Veja na figura a seguir a reta f(x,0) em vermelho e a reta f(0,y) em amarelo. Perceba que elas não variam e são identicamente nulas, ou seja, f(x,0) = 0 e f(0,y) = 0 para qualquer valor de x ou y. Isso garante que a derivada parcial destas funções no ponto (0,0) deve ser zero pois a função não varia nas direções (1,0) e (0,1), confirmando o que foi obtido anteriormente. Ainda, para ser mais abrangente, as derivadas parciais serão sempre nulas se x = 0 ou se y = 0 (ou, claro, se ambos forem nulos).

Continuidade



Um comentário:

  1. Seria interessante deixar mencionado que a função pode ter derivadas parciais e mesmo assim não ser contínua.

    ResponderExcluir