Mostrando postagens com marcador Dependência Linear. Mostrar todas as postagens
Mostrando postagens com marcador Dependência Linear. Mostrar todas as postagens

Espaço vetorial finitamente gerado, Dependência linear e Base de um espaço vetorial finitamente gerado

ESPAÇO VETORIAL FINITAMENTE GERADO

A forma mais fácil de se entender o que isso significa é através de exemplos. Considere o conjunto dos números reais. Este conjunto é um espaço vetorial sobre ele mesmo (Veja O que é um espaço vetorial) segundo a soma e a multiplicação que conhecemos.

Agora, seja o conjunto S = {1}, onde S $ \subset \, \Re $. É muito fácil perceber que qualquer valor real pode ser obtido através de uma Combinação Linear de {1}.

Exemplo:
$ 4,123904 \, = \, 4,123904 \times 1 $
$ \pi \, = \, \pi \times 1 $
$ \sqrt{2} \, = \, \sqrt{2} \times 1 $

Desta forma, $ \Re $ é um espaço vetorial finitamente gerado onde S gera $ \Re $. Infinitos outros conjuntos podem ser geradores de $ \Re $. O {1} é apenas um exemplo bastante didático para se utilizar, já que fica muito fácil perceber.

Para $ \Re ^2 $ é bastante simples de perceber que S = {(1,0) , (0,1)} é um conjunto gerador, porém S = {(-1,1) , (1,1)} também é um conjuntos gerador de $ \Re ^2 $. Veja:

Exemplo:
$ \left (4,10 \right ) \, = \, \alpha \times \left (-1,1 \right ) \, + \, \beta \times \left (1,1 \right ) $
$ \alpha \, = \, 3 , \, \beta \, = \, 7 $

Assim, para qualquer $ \left (a,b \right ) \, \in \, \Re ^2 $ temos que:
$ \left (a,b \right ) \, = \, \alpha \times \left (-1,1 \right ) \, + \, \beta \times \left (1,1 \right ) $
$ \alpha \, = \, \frac{a-b}{2} , \, \beta \, = \, \frac{a+b}{2} $

O que garante que S = {(-1,1) , (1,1)} gera $ \Re ^2 $

Assim, definimos:
Um espaço vetorial V é finitamente gerado quando existe um conjunto S $ \subset $ V, S finito, onde S gera V.

DEPENDÊNCIA LINEAR


Definição: Um conjunto S = { $ u_1 , \, u_2 , \, u_3 , \, ... $ } $ \subset $ V é linearmente independente se, e somente se, a relação $ \alpha _1 u_1 + \alpha _2 u_2 + \alpha _3 u_3 + ... = o , \, \alpha _i \, \in \, \Re $ só existir  para $ \alpha _1 = \alpha _2 = \alpha _3 = ... = 0 $.

Exemplo:
S = {(-1,1) , (1,1)}
$ \alpha _1 \times \left (-1,1 \right ) + \alpha _2 \times \left (1,1 \right ) \, = \, o $
$ - \alpha _1 + \alpha _2 \, = \, 0 $
$ \alpha _1 + \alpha _2 \, = \, 0  $

Que só é possível se $ \alpha _1 = \alpha _2 = 0 $. Assim, o conjunto S = {(-1,1) , (1,1)} é linearmente independente.


BASE DE UM ESPAÇO VETORIAL FINITAMENTE GERADO

Um conjunto S $ \subset $ V é uma base de V se:
1 - S gera V e;
2 - S é linearmente independente.

Com essas condições podemos concluir que o conjunto S = {(-1,1) , (1,1)} é uma base de $ \Re ^2 $.
Podemos perceber também que S = {1} é uma base de $ \Re $ e S = {(1,0) , (0,1)} é outra base de $ \Re ^2 $.

Fonte: CALLIOLI, Carlos A.; DOMINGUES, Hygino H.; COSTA, Roberto C. F., Álgebra Linear e Aplicações, São Paulo, Atual, 6ª ed, 1990.